Abstract

Linear filters are often employed in most signal processing applications. As a matter of fact, they are well understood within a uniform theory of discrete linear systems. However, many physical systems exhibit some nonlinear behaviour, and in certain situations linear filters perform poorly. One case is the problem of acoustic echo cancellation, where the digital filter employed has to identify as close as possible the acoustic echo path that is found to be highly nonlinear. In this situation a better system identification can be achieved by a nonlinear filter. The problem is to find a nonlinear filter structure able to realize a good approximation of the echo path without any significant increase of the computational load. Conventional Volterra filters are well suited for modelling that system but they generally need too many computational resources for a real time implementation. In this paper we consider some low complexity nonlinear filters in order to find out a filter structure able to achieve performances close to those of the Volterra filter, but with a reduced increase of the computational load in comparison to the linear filters commonly employed in commercial acoustic echo cancellers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.