Abstract
In the article, the authors have analysed the design and structural features of various materials for external insulation of high-voltage apparatuses, namely, high-voltage equipment of stations and substations. The operational reliability of the external insulation is determined mainly by the electrical load, which is characterized by the local values of the field strength. The field strength along the insulating cover is distributed very unevenly and has a maximum value near the electrode with high voltage. Electrical isolators are used in all high-voltage apparatus of electrical transmission and distribution circuits to separate the voltage from the ground. The materials used in the development and production of electrical insulators have certain unique characteristics. These materials prevent the free passage of internal electric charges in the material, which makes it practically impossible to conduct an electric current. The ability of a material to prevent electrical conductivity is characterized by its dielectric strength. Polymer insulators allow you to combine high mechanical strength with satisfactory electrical characteristics. In such combined structures, fiberglass rods or cylinders are used as an element that withstands mechanical load. Also, the design of the internal insulation of the capacitor type, impregnated and filled with hardened epoxy resin, allows for particularly precise winding of the synthetic material and the placement of aluminium foils, which provide the capacitive levelling of the graduation and are necessary for the control and formation of the electric field. Such a field is controlled in such a way as to optimize the dimensions, mass and electrical characteristics of the high-voltage apparatus depending on the voltage class and other parameters. The protective polymer coating provides high electrical characteristics of insulators under operating conditions. It is known that during the operation of the high-voltage device, the aging rate of the external insulation is additionally enhanced due to the complex and heterogeneous structure of the insulating cover itself, as well as the influence of the surrounding environment and weather conditions. The main element of external insulation is the supporting insulating cover, in the middle of which the elements of the active part of a certain electrical device are placed. Its basis is usually a glass-epoxy cylinder (this ensures the mechanical stability of the structure), on which ribs made of organosilicon rubber are placed, which in turn ensures the electrical strength of the external insulation.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have