Abstract

Dilated cardiomyopathy (DCM) is characterized by ventricular chamber enlargement and impaired myocardial function. Endomyocardial biopsies (EMB) enable immunohistochemical and molecular characterization of this disease. However, knowledge about specific molecular patterns and their relation to cardiac function in both ventricles is rare. Therefore, we performed a mass spectrometric analysis of 28 paired EMBs of left (LV) and right ventricles (RV) of patients with DCM or suspected myocarditis allowing quantitative profiling of 743 proteins. We analysed associations between protein abundance of LV and RV as well as the echocardiographic parameters LVEF, TAPSE, LVEDDI, and RVEDDI by linear regression models.Overall, more LV than RV proteins were associated with LV parameters or with RVEDDI. Most LV and RV proteins increasing in level with impairing of LVEF were annotated to structural components of cardiac tissue. Additionally, a high proportion of LV proteins with metabolic functions decreased in level with decreasing LVEF. Results were validated with LV heart sections of a genetic murine heart failure model.The study shows, that remodelling and systolic dysfunction in DCM is mirrored by distinct alterations in protein composition of both ventricles. Loss of LV systolic function is reflected predominantly by alterations in proteins assigned to metabolic functions in the LV whereas structural remodelling was more obvious in the RV. Alterations related to intermediate filaments were seen in both ventricles and highlight such proteins as early indicators of LV loss of function. SignificanceThe present study report protein sets in the RV and the LV being associated with ventricular function and remodelling in DCM. Protein abundances in the LV and the RV emphasize and expand current knowledge on pathophysiological changes in heart failure and DCM. While RV and LV EMBs do not differ concerning diagnostic assessment of inflammatory status and virus persistence, additional information reflecting disease severity associated protein alterations can be gained by EMB protein profiling. RV and LV protein data provided complementary information. The protein pattern of the LV reflects metabolic changes and an impaired energy production, which is associated with the degree of LV systolic dysfunction and remodelling and may yield important information about the disease status in DCM. On the other hand, at this disease stage of DCM with still preserved RV function, RV alterations in structural proteins may reflect myocardial compensatory protective mechanisms for maintenance of structure and cellular function.The study highlight particular proteins being of interest as heart failure biomarkers in both ventricles which seem to reflect the severity of the disease. Further comparative studies between different HF aetiologies have to evaluate those proteins as markers specific for DCM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.