Abstract
Cytochrome P450 enzymes (CYPs) are involved in the metabolism of various substances in the liver and small intestine and show markedly higher expression levels in the liver compared to other organs. The liver exhibits a remarkable capacity to regenerate. After excision of 70% of the liver, the organ can regenerate to its original size in approximately 1 week. Unlike the normal liver, in the injured liver, hepatic stem cells known as oval cells are considered to play an important role in regeneration. However, the role of CYPs in liver regeneration remains unclear. In the present study, we investigated the role of CYPs in the regeneration of injured liver. Liver injury was induced by 4-week repeated doses of 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) in the diet. Next, both DDC-fed mice and control diet (containing no DDC)-fed mice were subjected to 70% hepatectomy, and the hepatic gene expression patterns measured during regeneration were analyzed. Mice with DDC-induced liver injury expressed the oval cell markers cytokeratin 19 (CK19) and epithelial cell adhesion molecule (EpCAM), and partial hepatectomy increased the expression levels of CYP2R1 and CYP26A1 as well as the hepatoblast marker alpha-fetoprotein (AFP) in these mice. The results of this study suggest that CYP2R1 and CYP26A1 are important in the differentiation of oval cells into hepatoblast-like cells in the injured liver.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.