Abstract
Hepatic oval cells are considered to be facultative hepatic stem cells (HSCs) that differentiate into hepatocytes and cholangiocytes in severely injured liver. Hepatic oval cells have also been implicated in tumorigenesis. However, their nature and origin remain elusive. To isolate and characterize mouse oval cells, we searched for cell surface molecules expressed on oval cells and analyzed their nature at the single-cell level by flow cytometric analysis and in the in vitro colony formation assay. We demonstrate that epithelial cell adhesion molecule (EpCAM) is expressed in both mouse normal cholangiocytes and oval cells, whereas its related protein, TROP2, is expressed exclusively in oval cells, establishing TROP2 as a novel marker to distinguish oval cells from normal cholangiocytes. EpCAM(+) cells isolated from injured liver proliferate to form colonies in vitro, and the clonally expanded cells differentiate into hepatocytes and cholangiocytes, suggesting that the oval cell fraction contains potential HSCs. Interestingly, such cells with HSC characteristics exist among EpCAM(+) cells of normal liver. Intriguingly, comparison of the colony formation of EpCAM(+) cells in normal and injured liver reveals little difference in the number of potential HSCs, strongly suggesting that most proliferating mouse oval cells represent transit-amplifying cells rather than HSCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.