Abstract

Quadratic permutation polynomials (QPPs) have been widely studied and used as interleavers in turbo codes. However, less attention has been given to cubic permutation polynomials (CPPs). This paper proves a theorem which states sufficient and necessary conditions for a cubic permutation polynomial to be a null permutation polynomial. The result is used to reduce the search complexity of CPP interleavers for short lengths (multiples of 8, between 40 and 352), by improving the distance spectrum over the set of polynomials with the largest spreading factor. The comparison with QPP interleavers is made in terms of search complexity and upper bounds of the bit error rate (BER) and frame error rate (FER) for AWGN and for independent fading Rayleigh channels. Cubic permutation polynomials leading to better performance than quadratic permutation polynomials are found for some lengths.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.