Abstract

ABSTRACTPre‐stress bonded composite patch is a promising technique to reinforce steel member damaged by fatigue. The effectiveness of this technique was verified by fatigue tests on notched steel plates. Results showed that the application of carbon fibre reinforced plastic (CFRP) strips and, eventually, the introduction of a compressive stress by pretension of the CFRP strips prior to bonding produced a significant increment of the remaining fatigue life. In this paper, the stress intensity factor in the notched plates is computed by a two‐dimensional finite element model in connection with the three‐layer technique in order to reduce the computational effort. Due to high stress concentration at the plate crack tip, debond is assumed at the adhesive–plate interface. The goal is to illustrate the influence of some reinforcement parameters such as the composite strip stiffness, the pre‐stress level, the adhesive layer thickness and the size of the debonded region on the effectiveness of the composite patch reinforcement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.