Abstract

We present in this study results obtained with a laser-ablation coupled with both a quadrupole and a multi-collector ICPMS. The simultaneous in situ Sr/Ca and 87Sr/ 86Sr measurements along growth profiles in enamel allows the concomitant diet and migration patterns in mammals to be reconstructed. Aliquots of the powdered international standard NIST “SRM1400 Bone Ash” with certified Sr and Ca contents, was sintered at high pressure and temperature and was adopted as the reference material for external reproducibility and calibration of the results. A total of 145 coupled elemental and isotopic measurements of herbivores enamel from the Kruger National Park, South Africa, gives intra-tooth Sr/Ca and 87Sr/ 86Sr variations that are well larger than external reproducibility. Sr/Ca profiles systematically decrease from the dentine-enamel junction to the outer enamel whereas 87Sr/ 86Sr profiles exhibit variable patterns. Using a simple geometric model of hypsodont teeth growth, we demonstrate that a continuous recording of the 87Sr/ 86Sr variations can be reconstructed in the tooth length axis. This suggests that the mobility of a mammal can be reconstructed over a period of more than a year with a resolution of a ten of days, by sampling enamel along growth profiles. Our geometric model of hypsodont teeth growth predicts that an optimal distance between two successive profiles is equal to the enamel thickness. However, this model does not apply to the Sr/Ca signal which is likely to be altered during the enamel maturation stage due to differential maturation processes along enamel thickness. Here, the observed constant decreases of the Sr/Ca ratios in the ungulates of Kruger National Park suggests that they did not changed of diet, while some of them were migrating.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call