Abstract
Binary Decision Diagrams (BDDs) provide a canonical and compact representation of Boolean functions. The canonical property makes it possible to easily detect many useful properties of Boolean functions such as size of the support set, symmetry between variables etc. Furthermore, BDDs compact representation coupled with the use of data structures for caching intermediate computations allows the effective implementation of many Boolean operations. In this paper, we present a new methodology and implementation details of the composition techniques of two combinational switching functions using reduced ordered binary decision diagrams ROBDDs. For instance, given two switching functions A and B, we present the composition formulas A∧B,A∨B,A→B etc using ROBDDs. In this regard, we have used the concept of Shannon’s Expansion to directly build ROBDDs. An adequate number of examples have been used to make our method clear.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.