Abstract

Based on the basic geological data and production data of coalbed methane wells in the Shouyang Block, the characteristics and influencing factors of coalbed methane well production were analyzed, and the primary controlling factors were identified by the grey correlation method. The results show that the average daily gas production of the coalbed methane wells in the study area for the single mining of No. 15 coal ranges from 0 to 604.34 m3/d, with an average of 116.82 m3/d. The overall average gas production is relatively low, with only 7 of the 42 wells having an average gas production greater than 200 m3/d. Gas production tends to increase as the gas content increases. There is a significant positive correlation between gas saturation and average gas production. Burial depth and coal seam thickness also show a positive correlation with average gas production. On the other hand, there is a negative exponential relationship between average gas production and critical desorption pressure. Permeability, as determined by well tests in the area, exhibits a negative correlation with the gas production of coalbed methane wells. The correlation between gas production and the mean three-dimensional stress is weak. As the fractal dimension D value of fractures increases, gas production decreases. A smaller difference in horizontal principal stress is more favorable for the formation of network fractures, facilitating reservoir fracturing and resulting in better reconstructive properties. Moreover, an increase in the sand–mud ratio leads to a decrease in average gas production. The correlation between fault fractal dimension and average gas production is weak. The grey correlation method was employed to determine the controlling factors of coalbed methane production in the study area, ranked from strong to weak, as follows: coal thickness > fracture fractal dimension D value > gas saturation > coal seam gas content > horizontal stress difference coefficient > permeability > critical desorption pressure > mean value of three-dimensional principal stress > coal seam burial depth > sand–mud ratio > fault fractal dimension.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call