Abstract
This paper investigates the middle layer stretching effect on the dynamic behavior of an energy harvester clamped-clamped beam. Two foam cylinders that are attached together as a dumbbell are mounted on the middle part of the beam for vortex-induced vibrations. The piezoelectric patch collects the electrical energy produced by vortex induced vibration. In this analysis the coupled differential equations governing on the structure oscillation, harvested voltage and fluid lift force are established applying the Hamilton’s principle, Gauss law and wake oscillator model. The obtained differential equations are discretized using Galerkin method, and solved by both numerical and analytical perturbation methods. The results demonstrate that middle layer stretching effect has a significant effect on the lock-in domain, and the output electric voltage must be evaluated by considering this effect. It has been shown that for large values of cylinder diameter the difference between numerical and theoretical results increases due to increasing the middle layer stretching effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Intelligent Material Systems and Structures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.