Abstract

The current standard of care for patients with inoperable stage III non-small cell lung cancer (NSCLC) includes chemoradiotherapy (CRT) followed by one year of checkpoint inhibitor (CPI) therapy. However, the optimal duration of consolidation CPI remains unknown. Here, we characterized the relationship between circulating tumor DNA (ctDNA) minimal residual disease (MRD) and clinical outcomes of unresectable locally advanced NSCLC patients treated on a phase 2 trial of short course consolidation immunotherapy after CRT, with the goal of testing if ctDNA may be able to identify patients who do not require a full year of treatment. Plasma samples for ctDNA analysis were collected from patients on the BTCRC LUN 16-081 trial after completion of CRT, prior to C2D1 of CPI (i.e. 1 month after treatment start), and at the end of up to 6 months of treatment. Tumor-informed ctDNA MRD analysis was performed using CAPP-Seq. Levels of ctDNA at each time point were correlated with clinical outcomes. Detection of ctDNA predicted significantly inferior progression-free survival (PFS) after completion of CRT (24-month 29% vs 65%, P = 0.0048), prior to C2D1 of CPI (24-month 0% vs 72%, P < 0.0001) and at the end of CPI (24-month 15% vs 67%, P = 0.0011). Additionally, patients with decreasing or undetectable ctDNA levels after one cycle of CPI had improved outcomes compared to patients with increasing ctDNA levels (24-month PFS 72% vs 0%, P < 0.0001). Progression of disease occurred within <12 months of starting CPI in all patients with increasing ctDNA levels at C2D1. Detection of ctDNA before, during, or after 6 months of consolidation CPI is strongly associated with inferior outcomes. Our findings suggest that analysis of ctDNA MRD may enable personalizing the duration of consolidation immunotherapy treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call