Abstract

Communication between cells is essential in maintaining homeostasis. The persistent disruption of cell–cell communication by environmental contaminants contributes to progressive disease and toxicity. In this study, single-nuclei RNA sequencing (snRNAseq) data was used to examine dose-dependent cell-specific changes in cell–cell communication associated with the development of liver pathologies following the persistent activation of the aryl hydrocarbon receptor (AHR) by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Published hepatic snRNAseq data from male mice gavaged with sesame-oil vehicle or TCDD every 4 days for 28 days was used to assess the AHR-mediated disruption of ligand–receptor interactions. Analysis identified that portal fibroblasts and liver sinusoidal endothelial cells contributed the most ligand–receptor pairs at doses < 0.3μg/kg TCDD. Doses ≥ 0.3 μg/kg TCDD increased the putative intercellular communication between hepatocytes and hepatic stellate cells. In control livers, interactions primarily consisted of protease-activated receptor (PAR) signaling. TCDD treatment increased the number of active signaling pathways. Within hepatocytes, neuregulin signaling was induced, activating the NRG1–ERBB4 ligand axis, consistent with AHR genomic enrichment at dioxin response elements in a published chromatin immunoprecipitation sequencing (ChIP-seq) dataset, which suggested a direct regulation. Collectively, the results suggest that the disruption of cell signaling may play a central role in TCDD-elicited liver pathologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.