Abstract

Abstract This paper aims at the investigation of an active power filter (APF) comprised of a transformerless multilevel inverter (MLI) for power conditioning in three-phase three-wire distribution network. The inverter topologies used here are three, five, seven and nine-level. The system configuration mainly involves cascaded MLI structure of APF, generation of compensation filter currents based on instantaneous active and reactive current component (id–iq) method and dc-link voltage regulation using a PI controller. Not many papers focus on the regulation of dc-link capacitor voltage. Here we have proposed the implementation of bacterial foraging optimization (BFO) to extract the gains of PI controller. The proposed work provides improved dc-link voltage regulation, quick prevail over current harmonics and reduction of overall source current THD. Adequate MATLAB/Simulink simulation results are presented for the different cascaded MLIs discussed above. Additionally, the performance has been validated in real-time using Opal-RT Lab simulator considering three different conditions of supply i.e., balanced sinusoidal, balanced non-sinusoidal and unbalanced sinusoidal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.