Abstract
Cardiac colony forming unit-fibroblasts (cCFU-F) are a population of stromal cells residing within the SCA1+/PDGFRα+/CD31− fraction of adult mouse hearts, and which have functional characteristics akin to bone marrow mesenchymal stem cells. We hypothesise that they participate in cardiac homeostasis and repair through their actions as lineage progenitors and paracrine signaling hubs. However, cCFU-F are rare and there are no specific markers for these cells, making them challenging to study. cCFU can self-renew in vitro, although the common use of serum has made it difficult to identify cytokines that maintain lineage identity and self-renewal ability. Cell heterogeneity is an additional confounder as cCFU-F cultures are metastable. Here, we address these limitations by identifying serum-free medium (SFM) for growth, and by using cCFU-F isolated from PdgfraGFP/+ mice to record fate outcomes, morphology and PDGFRα expression for hundreds of single cells over time. We show that SFM supplemented with basic fibroblast growth factor, transforming growth factor-β and platelet-derived growth factor, enhanced cCFU-F colony formation and long-term self-renewal, while maintaining cCFU-F potency. cCFU-F cultured in SFM maintained a higher proportion of PDGFRα+ cells, a marker of self-renewing cCFU-F, by increasing Pdgfra-GFP+ divisions and reducing the probability of spontaneous myofibroblast differentiation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have