Abstract
Bridging the gap between two-dimensional cell cultures and complex in vivo tissues, three-dimensional cell culture models are of increasing interest in the fields of cell biology and pharmacology. However, present challenges hamper live cell imaging of three-dimensional cell cultures. These include (i) the stabilization of these structures under perfusion conditions, (ii) the recording of many z-planes at high spatio-temporal resolution, (iii) and the data analysis that ranges in complexity from whole specimens to single cells. Here, we addressed these issues for the time-lapse analysis of Ca2+ signaling in spheroids composed of human tongue-derived HTC-8 cells upon perfusion of gustatory substances. Live cell imaging setups for confocal and light sheet microscopy were developed that allow simple and robust spheroid stabilization and high-resolution microscopy with perfusion. Visualization of spheroids made of HTC-8 cells expressing the G-GECO fluorescent Ca2+ sensor revealed Ca2+ transients that showed similar kinetics but different amplitudes upon perfusion of bitter compounds Salicine and Saccharin. Dose-dependent responses to Saccharin required extracellular Ca2+. From the border towards the center of spheroids, compound-induced Ca2+ signals were progressively delayed and decreased in amplitude. Stimulation with ATP led to strong Ca2+ transients that were faster than those evoked by the bitter compounds and blockade of purinergic receptors with Suramin abutted the response to Saccharin, suggesting that ATP mediates a positive autocrine and paracrine feedback. Imaging of ATP-induced Ca2+ transients with light sheet microscopy allowed acquisition over a z-depth of 100 μm without losing spatial and temporal resolution. In summary, the presented approaches permit the study of fast cellular signaling in three-dimensional cultures upon compound perfusion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.