Abstract

The boriding process is a thermochemical surface treatment which can be applied to many iron and non-ferrous materials and improves the properties of the material such as hardness, wear resistance. In the present study, the layer thickness values of the boronized AISI 430 material were optimized using the Response Surface Methodology. Mathematical model was constructed using parameters such as temperature and time and the results were analyzed comparatively. As a result of the analysis, the optimum layer thickness value for AISI 430 material was obtained as 39.0183 µm for 1000 ºC and 5.9h and it was determined that the boriding temperature and time are effective on the boride layer formation process of AISI 430 material. Finally, the Response Surface Methodology and Face Centered Central Composite Design have been effectively applied to the boriding process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.