Abstract
Abstract Solutions for radial flow of a Bingham fluid are analyzed in this paper. It aims to eliminate confusions in the literature concerning the plug flow region in different solutions for analysis and design of grouting in rock fractures. The analyses based on the force balance equation reveal that the plug flow region in Bingham radial flow is independent of the fracture radius, and is not a growth function adapted from the solution of one-dimensional (1D) slit flow according to ‘similarity’. Based on the shear stress distribution, we analytically proposed that a non-uniform plug flow region cannot exist. The Bingham fluid (grout) penetration and flowrate evolution as functions of grouting time are given using the correct expression for the plug flow region. The radius-independent plug flow region and the presented flowrate evolution equation are also verified numerically. For radial flow, the relative penetration length is equal to the relative width of plug flow region, which is the same as that for 1D channel flow. Discrepancies in analytical solutions for grout penetration and flowrate evolution were also illustrated. The clarification of the plug flow region and evaluation of discrepancies in analytical solutions presented in this work could simplify modeling and design of grouting in rock engineering applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have