Abstract

Abstract We analyze backward Euler time stepping schemes for a primal DPG formulation of a class of parabolic problems. Optimal error estimates are shown in a natural norm and in the L 2 {L^{2}} norm of the field variable. For the heat equation the solution of our primal DPG formulation equals the solution of a standard Galerkin scheme and, thus, optimal error bounds are found in the literature. In the presence of advection and reaction terms, however, the latter identity is not valid anymore and the analysis of optimal error bounds requires to resort to elliptic projection operators. It is essential that these operators be projections with respect to the spatial part of the PDE, as in standard Galerkin schemes, and not with respect to the full PDE at a time step, as done previously.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.