Abstract
BackgroundRainbow trout (Oncorhynchus mykiss) are cultivated worldwide for aquaculture production and are widely used as a model species to gain knowledge of many aspects of fish biology. The common ancestor of the salmonids experienced a whole genome duplication event, making extant salmonids such as the rainbow trout an excellent model for studying the evolution of tetraploidization and re-diploidization in vertebrates. However, the lack of a reference genome sequence hampers research progress for both academic and applied purposes. In order to enrich the genomic tools already available in this species and provide further insight on the complexity of its genome, we sequenced a large number of rainbow trout BAC-end sequences (BES) and characterized their contents.ResultsA total of 176,485 high quality BES, were generated, representing approximately 4% of the trout genome. BES analyses identified 6,848 simple sequence repeats (SSRs), of which 3,854 had high quality flanking sequences for PCR primers design. The first rainbow trout repeat elements database (INRA RT rep1.0) containing 735 putative repeat elements was developed, and identified almost 59.5% of the BES database in base-pairs as repetitive sequence. Approximately 55% of the BES reads (97,846) had more than 100 base pairs of contiguous non-repetitive sequences. The fractions of the 97,846 non-repetitive trout BES reads that had significant BLASTN hits against the zebrafish, medaka and stickleback genome databases were 15%, 16.2% and 17.9%, respectively, while the fractions of the non-repetitive BES reads that had significant BLASTX hits against the zebrafish, medaka, and stickleback protein databases were 10.7%, 9.5% and 9.5%, respectively. Comparative genomics using paired BAC-ends revealed several regions of conserved synteny across all the fish species analyzed in this study.ConclusionsThe characterization of BES provided insights on the rainbow trout genome. The discovery of specific repeat elements will facilitate analyses of sequence content (e.g. for SNPs discovery and for transcriptome characterization) and future genome sequence assemblies. The numerous microsatellites will facilitate integration of the linkage and physical maps and serve as valuable resource for fine mapping QTL and positional cloning of genes affecting aquaculture production traits. Furthermore, comparative genomics through BES can be used for identifying positional candidate genes from QTL mapping studies, aid in future assembly of a reference genome sequence and elucidating sequence content and complexity in the rainbow trout genome.
Highlights
Rainbow trout (Oncorhynchus mykiss) are cultivated worldwide for aquaculture production and are widely used as a model species to gain knowledge of many aspects of fish biology
The GC content was estimated to be around 42%, which is lower than channel catfish [34] and stickleback (44%), but higher than zebrafish (36%) and medaka (40%)
The fractions of the 97,846 non-repetitive trout bacterial artificial chromosome (BAC)-end sequences (BES) reads that had significant BLASTN hits against the zebrafish, medaka and stickleback genome databases were 15%, 16.2% and 17.9%, respectively, while the fractions of the non-repetitive BES reads that had significant BLASTX hits against the zebrafish, medaka, and stickleback protein databases were 10.7%, 9.5% and 9.5%, respectively (Tables 3 and 4)
Summary
Rainbow trout (Oncorhynchus mykiss) are cultivated worldwide for aquaculture production and are widely used as a model species to gain knowledge of many aspects of fish biology. The common ancestor of the salmonids experienced a whole genome duplication event, making extant salmonids such as the rainbow trout an excellent model for studying the evolution of tetraploidization and re-diploidization in vertebrates. Rainbow trout (Oncorhynchus mykiss) are cultivated worldwide for aquaculture production. The rainbow trout is one of the most intensively studied fish species. Several features such as in vitro fertilization, ease of rearing and gamete handling and a large body size with large and clearly defined tissues, make it a suited model to carry out a range of investigations. Considerable amount of basic knowledge has been accumulated in many areas such as physiology, nutrition, behaviour, ecology, genetics, pathology, comparative immunology, carcinogenesis and toxicology (reviewed in [1])
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have