Abstract
Robotic technology is quickly evolving allowing robots to perform more complex tasks in less structured environments with more flexibility and autonomy. Heterogeneous multi-robot teams are more common as the specialized abilities of individual robots are used in concert to achieve tasks more effectively and efficiently. An important area of research is the use of robot teams to perform modular assemblies. To this end, this paper analyzed the relative performance of two robots with different morphologies and attributes in performing an assembly task autonomously under different coordination schemes using force sensing through a control basis approach. A rigid, point-to-point manipulator and a dual-armed pneumatically actuated humanoid robot performed the assembly of parts under a traditional "push-hold" coordination scheme and a human-mimicked "push-push" scheme. The study revealed that the scheme with higher level of cooperation--the "push-push" scheme--performed assemblies faster and more reliably, lowering the likelihood of stiction phenomena, jamming, and wedging. The study also revealed that in "push-hold" schemes industrial robots are better pushers and compliant robots are better holders. The results of our study affirm the use of heterogeneous robots to perform hard-to-do assemblies and also encourage humans to function as holder's when working in concert with a robot assistant for insertion tasks.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have