Abstract
Analytical models of two deformation region types considering the percentages of three regions in the plastic deformation zone are proposed for analyzing asymmetrical rolling of strip and used to calculate the critical speed ratio, three region percentages, roll force, and roll torque. The effective range of speed ratio on thickness reduction increases with increasing critical speed ratio. When the deformation region type is backward-slip zone + cross-shear zone + forward-slip zone (B+C+F), with increasing speed ratio, the thickness reduction in asymmetrical strip rolling increases evidently, but remains unchanged when the critical speed ratio is exceeded, where the deformation region type is backward-slip zone + cross-shear zone (B+C). It is achievable to increase thickness reduction by increasing the roll force and front tension, which can not only increase the reduction rate, but also increase the critical speed ratio. The effect of asymmetrical rolling on thickness reduction is enhanced with decreasing of the roll force and front and back tension because of the increasing cross-shear zone percentage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Advanced Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.