Abstract

We experimentally investigate the impact of chromatic dispersion (CD), post-filtering effects (PFEs), and backreflection-induced penalties on intensity-remodulation topologies based on self-seeded directly modulated reflective semiconductor optical amplifiers (RSOAs) acting as downstream carriers. Optical eye diagrams and power penalties as a function of link reach and reflection tolerances, as well as optical spectra and bit error rate (BER) performance up to 100 km, are measured and directly compared to a conventional prespectrum slicing light (PSSL) injection topology, in order to highlight the advantages and drawbacks of the self-seeding scheme. Downstream and bidirectional reaches up to 80 and 60 km, respectively, with a maximum 2 dB power penalty (for a BER of 10−12) at 1.25 Gb/s operation are demonstrated in our self-seeding configuration, which enables enhanced resilience to CD and PFE effects while surpassing the conventional PSSL scheme in about 40 km.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call