Abstract
Nowadays multi-chamber arresters are widely distributed as devices of lightning protection of overhead power lines. A mathematical modelling of processes in the discharge chamber of multichamber arrester is necessary to carry out in order to improve its breaking capacity. A three-dimensional mathematical transient model of thermal, gas-dynamic and electromagnetic processes taking place in the discharge chamber of multi-chamber arrester is presented in the article. Basic assumptions, model equations, a computational domain and the boundary conditions are described. Plasma turbulence is taken into account. The results of the calculation i.e. distributions of plasma temperature and overpressure in the discharge chamber at different time points are shown. The analysis of the results was carried out. It is shown that the presence of cavities in the electrodes design promotes electric arc extinction in the discharge chamber of multi-chamber arrester.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have