Abstract

Anomalous transport in magnetically confined plasmas is investigated by radial fractional transport equations. It is shown that for fractional transport models, hollow density profiles are formed and uphill transports can be observed regardless of whether the fractional diffusion coefficients (FDCs) are radially dependent or not. When a radially dependent FDC is imposed, compared with the case under it is observed that the position of the peak of the density profile is closer to the core. Further, it is found that when FDCs at the positions of source injections increase, the peak values of density profiles decrease. The non-local effect becomes significant as the order of fractional derivative and causes the uphill transport. However, as the fractional diffusion model returns to the standard model governed by Fick’s law.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.