Abstract
We consider a mathematical SIL model for the spread of a directly transmitted infectious disease in an age-structured population; taking into account the demographic process and the vertical transmission of the disease. First we establish the mathematical well-posedness of the time evolution problem by using the semigroup approach. Next we prove that the basic reproduction ratio R0 is given as the spectral radius of a positive operator, and an endemic state exist if and only if the basic reproduction ratio R0 is greater than unity, while the disease-free equilibrium is locally asymptotically stable if R0<1. We also show that the endemic steady states are forwardly bifurcated from the disease-free steady state when R0 cross the unity. Finally we examine the conditions for the local stability of the endemic steady states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Revue Africaine de Recherche en Informatique et Mathématiques Appliquées
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.