Abstract
This paper theoretically analyzes the effect of the velocity and attitude errors of Master Inertial Navigation System(MINS) on the accuracy of Slave Inertial Navigation System(SINS) transfer alignment in velocity and attitude matching, and validates the analysis through simulation. Theoretical analysis involves deriving a new state equation that considers the velocity and attitude errors of MINS from the state equation of the transfer alignment filter, and deriving the state estimation equation of the Kalman filter based on this. The analysis confirms that MINS's velocity and attitude errors induce the same level of velocity and attitude errors in SINS. A reference inertial navigation system model is added to the simulation model, and the transfer alignment accuracy is analyzed by comparing the navigation information of MINS and SINS with the reference inertial navigation system. It is confirmed that the accuracy analysis results through simulation are consistent with the theoretically analyzed results, and through this, the validity of the theoretically analysis in this paper is verified. The research findings indicate that when performing transfer alignment using MINS, which is likely to be operated for prolonged periods in pure inertial navigation mode, the navigation errors of MINS are transferred to SINS. This implies that initial correction navigation is necessary to be considered for SINS
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Korea Institute of Military Science and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.