Abstract

An analytical expression for the probability density function of the signal-to-noise ratio (SNR) at the output of a two-branch maximal ratio and selection diversity system is given. The two branches are assumed to be Rayleigh fading, correlated, as well as of unequal average SNRs. Measurements of the cumulative distribution functions after selection and maximal ratio combining were made in Rayleigh fading channels and compared with the analytical results. Also presented are the exact analytical average probabilities of symbol error for coherent binary phase-shift keying and coherent quaternary phase-shift keying before and after two-branch maximal ratio combining for a slow and flat fading correlated Rayleigh channel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.