Abstract
In this work, we design and analyze a discrete model to approximate the solutions of a parabolic partial differential equation in multiple dimensions. The mathematical model considers a nonlinear reaction term and a space-dependent diffusion coefficient. The system has a Gibbs' free energy, we establish rigorously that it is non-negative under suitable conditions, and that it is dissipated with respect to time. The discrete model proposed in this work has also a discrete form of the Gibbs' free energy. Using a fixed-point theorem, we prove the existence of solutions for the numerical model under suitable assumptions on the regularity of the component functions. We prove that the scheme preserves the positivity and the dissipation of the discrete Gibbs' free energy. We establish theoretically that the discrete model is a second-order consistent scheme. We prove the stability of the method along with its quadratic convergence. Some simulations illustrating the capability of the scheme to preserve the dissipation of Gibb's energy are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.