Abstract

We study the singular event which took place when conducting an experiment with a liquid bridge aboard the International Space Station. The liquid bridge vibrated unexpectedly for several tens of seconds with an oscillation amplitude larger than 15% of its radius. At first glance, the analysis of the mass force measured by the accelerometer during the oscillation did not show any significant perturbation. However, our study reveals the existence of two small-amplitude vibrations of the experimental setup with practically the resonance frequency of the first lateral mode. These vibrations occurred a few tens of seconds before the liquid bridge oscillation reached its maximum amplitude, produced a mass force with a magnitude of the order of 10−5g. The numerical integration of the non-linear Navier–Stokes equations reproduces remarkably well the free surface oscillations measured in the experiments. It allows us to reconstruct the three-dimensional liquid bridge motion which took place in the experiment. The present study illustrates the sensitivity of liquid bridges in a microgravity environment, where tiny perturbations may produce significant vibrations which survive over long periods of time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call