Abstract

We present a study of the incremental projection method to solve incompressible unsteady Stokes equations based on a low degree non-conforming finite element approximation in space, with, in particular, a piecewise constant approximation for the pressure. The numerical method falls in the class of algebraic projection methods. We provide an error analysis in the case of Dirichlet boundary conditions, which confirms that the splitting error is second-order in time. In addition, we show that pressure artificial boundary conditions are present in the discrete pressure elliptic operator, even if this operator is obtained by a splitting performed at the discrete level; however, these boundary conditions are imposed in the finite volume (weak) sense and the optimal order of approximation in space is still achieved, even for open boundary conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.