Abstract

Per- and polyfluoroalkyl substances (PFAS) are an emerging class of compounds that cause health and environmental problems worldwide. In aquatic environments, PFAS may bioaccumulate in sediment organisms, which can affect the health of organisms and ecosystems. As such, it is important to develop tools to understand their bioaccumulation potential. In the present study, the uptake of perfluorooctanoic acid (PFOA) and perfluorobutane sulfonic acid (PFBS) from sediments and water was assessed using a modified polar organic chemical integrative sampler (POCIS) as a passive sampler. While POCIS has previously been used to measure time-weighted concentrations of PFAS and other compounds in water, in our study, the design was adapted for analyzing contaminant uptake and porewater concentrations in sediments. The samplers were deployed into seven different tanks containing PFAS-spiked conditions and monitored over 28 days. One tank contained only water with PFOA and PFBS, three tanks contained soil with 4% organic matter, and three tanks contained soil combusted at 550 °C to minimize the influence of labile organic carbon. The uptake of PFAS from the water was consistent with previous research using a sampling rate model or simple linear uptake. For the samplers placed in the sediment, the uptake process was explained well using a mass transport based on the external resistance from the sediment layer. Uptake of PFOS in the samplers occurred faster than that of PFOA and was more rapid in the tanks containing the combusted soil. A small degree of competition was observed between the two compounds for the resin, although these effects are unlikely to be significant at environmentally relevant concentrations. The external mass transport model provides a mechanism to extend the POCIS design for measuring porewater concentrations and sampling releases from sediments. This approach may be useful for environmental regulators and stakeholders involved in PFAS remediation. Environ Toxicol Chem 2023;00:1-13. © 2023 SETAC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.