Abstract

This paper presents a parallel volume rendering algorithm that can render a 256/spl times/256/spl times/225 voxel medical data set at over 15 Hz and a 512/spl times/512/spl times/334 voxel data set at over 7 Hz on a 32-processor Silicon Graphics Challenge. The algorithm achieves these results by minimizing each of the three components of execution time: computation time, synchronization time, and data communication time. Computation time is low because the parallel algorithm is based on the recently-reported shear-warp serial volume rendering algorithm which is over five times faster than previous serial algorithms. The algorithm uses run-length encoding to exploit coherence and an efficient volume traversal to reduce overhead. Synchronization time is minimized by using dynamic load balancing and a task partition that minimizes synchronization events. Data communication costs are low because the algorithm is implemented for shared-memory multiprocessors, a class of machines with hardware support for low-latency fine-grain communication and hardware caching to hide latency. We draw two conclusions from our implementation. First, we find that on shared-memory architectures data redistribution and communication costs do not dominate rendering time. Second, we find that cache locality requirements impose a limit on parallelism in volume rendering algorithms. Specifically, our results indicate that shared-memory machines with hundreds of processors would be useful only for rendering very large data sets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.