Abstract
Wireless charging through directed radio frequency (RF) waves is an emerging technology that can be used to replenish the battery of a sensor node, albeit at the cost of data communication in the network. This tradeoff between energy transfer and communication functions requires a fresh perspective on medium access control (MAC) protocol design for appropriately sharing the channel. Through an experimental study, we demonstrate how the placement, the chosen frequency, and number of the RF energy transmitters impact the sensor charging time. These studies are then used to design a MAC protocol called RF-MAC that optimizes energy delivery to sensor nodes, while minimizing disruption to data communication. In the course of the protocol design, we describe mechanisms for (i) setting the maximum energy charging threshold, (ii) selecting specific transmitters based on the collective impact on charging time, (iii) requesting and granting energy transfer requests, and (iv) evaluating the respective priorities of data communication and energy transfer. To the best of our knowledge, this is the first distributed MAC protocol for RF energy harvesting sensors, and through a combination of experimentation and simulation studies, we observe 300% maximum network throughput improvement over the classical modified unslotted CSMA MAC protocol.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.