Abstract

To compare the biomechanical and technical properties of flexor tendon repairs using a 4-strand cruciate FiberWire (FW) repair and a 2-strand multifilament stainless steel (MFSS) single cross-lock cable-crimp system. Eight tests were conducted for each type of repair using cadaver hand flexor digitorum profundus tendons. We measured the required surgical exposure, repair time, and force of flexion (friction) with a custom motor system with an inline load cell and measured ultimate tensile strength (UTS) and 2-mm gap force on a servo-hydraulic testing machine. Repair time averaged less than 7 minutes for the 2-strand MFSS cable crimp repairs and 12 minutes for the FW repairs. The FW repair was performed with 2 cm of exposure and removal of the C-1 and A-3 pulleys. The C-1 and A-3 pulleys were retained in each of the MFSS cable crimp repairs with less than 1 cm of exposure. Following the FW repair, the average increase in friction was 89% compared with an average of 53% for the MFSS repairs. Six of the 8 MFSS specimens achieved the UTS before any gap had occurred, whereas all of the FW repairs had more than 2 mm of gap before the UTS, indicating that the MFSS was a stiffer repair. The average UTS appeared similar for both groups. We describe a 2-strand multifilament stainless steel single cross-lock cable crimp flexor repair system. In our studies of this cable crimp system, we found that surgical exposure, average repair times, and friction were reduced compared to the traditional 4-strand cruciate FW repair. While demonstrating these benefits, the crimp repair also produced a stiff construct and high UTS and 2-mm gap force. A cable crimp flexor tendon repair may offer an attractive alternative to current repair methods. The benefits may be important especially for flexor tendon repair in zone 2 or for the repair of multiple tendons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call