Abstract
A Josephson junction noise thermometer directly coupled to a low noise preamplifier is analyzed. The absolute determination of temperature is disturbed by several effects: mixed down noise, additive noise, post-detection filter, etc. The analysis presented here takes these error sources into account, and the accuracy of the thermometer is estimated. The analysis shows that, exactly like an rf-biased i2-SQUID noise thermometer, a directly coupled noise thermometer is ultimately limited by the noise temperature of the preamplifier. Since the noise temperature of a state-of-the-art dc SQUID amplifier is excellent, sufficiently low uncertainty (less than 1%) can be obtained, even below 1 mK.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.