Abstract
The removal of mixed noise is a stiff problem since the distribution of the noise cannot be predicted accurately. The most common mixed noise is the combination of Additive White Gaussian Noise (AWGN) and Impulse Noise (IN). Many methods first attempt to remove IN but it might collapse the texture of the image. In this paper, we propose a new learning-based method using convolutional neural network (CNN) for removing mixed gaussian-impulse noise. Since our denoising network can remove various level of mixed noise, neither the preprocessing for removing IN nor noise-level estimation is necessary.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.