Abstract

Hybrid refrigeration cycles which combine a mechanical compressor and an absorption cycle in such a way that they share a single evaporator were analysed. The motivation for the investigation of hybrid cycles was the need to more efficiently utilize the output of an internal combustion engine. The hybrid cycles make efficient use of both the work and the heat output of an engine. Performance calculations are reported for a promising cycle which utilizes LiBr-H 2O as the working fluid. For this working fluid, the refrigerant is water. Owing to the potential sensitivity of the absorption cycle components to oil contamination, the cycle was analysed assuming an oil-free steam compressor (screw design). Although oil-free steam compressors are available, they are used only sparingly in the industry. The capital cost for such a compressor is very high and the isentropic efficiency of the available units is low. This combination of high cost and low performance results in poor economics for the hybrid cycle based on the available technology. However, the cycle has significant potential from a thermodynamic viewpoint and it provides an incentive for compressor manufacturers to refine the oil-free steam compression technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call