Abstract

In this paper, we analyze a finite buffer queueing model with two servers and two nonpreemptive priority service classes. The arrival streams are independent Poisson processes, and the service times of the two classes are exponentially distributed with different means. One of the two servers is reserved exclusively for one class with high priority and the other server serves the two classes according to a nonpreemptive priority service schedule. For the model, we describe its dynamic behavior by a four-dimensional continuous-time Markov process. Applying recursive approaches we present the explicit representation for the steady-state distribution of this Markov process. Then, we calculate the Laplace–Stieltjes Transform and the steady-state distribution of the actual waiting times of two classes of customers. We also give some numerical comparison results with other queueing models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.