Abstract
Consider a single-server retrial queueing system with non-preemptive priority service, where customers arrive in a Poisson process with a rate of $\lambda_1$ for high-priority customers (class 1) and $\lambda_2$ for low-priority customers (class 2). If a high-priority customer is blocked, they are queued, while a low-priority customer must leave the service area and return after some random period of time to try again. In contrast with existing literature, we assume different service time distributions for the two customer classes. This investigation proposes a stochastic comparison method based on the general theory of stochastic orders to obtain lower and upper bounds for the joint stationary distribution of the number of customers at departure epochs in the considered model. Specifically, we discuss the stochastic monotonicity of the embedded Markov queue-length process in terms of both the usual stochastic and convex orders. We also perform a numerical sensitivity analysis to study the effect of the arrival rate of high-priority customers on system performance measures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.