Abstract

Internet worms exploiting zero-day vulnerabilities have drawn significant attention owing to their enormous threats to Internet in the real world. To begin with, a worm propagation model with time delay in vaccination is formulated. Through theoretical analysis, it is proved that the worm propagation system is stable when the time delay is less than the thresholdτ0and Hopf bifurcation appears when time delay is equal to or greater thanτ0. Then, a worm propagation model with constant quarantine strategy is proposed. Through quantitative analysis, it is found that constant quarantine strategy has some inhibition effect but does not eliminate bifurcation. Considering all the above, we put forward impulsive quarantine strategy to eliminate worms. Theoretical results imply that the novel proposed strategy can eliminate bifurcation and control the stability of worm propagation. Finally, simulation results match numerical experiments well, which fully supports our analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.