Abstract

We model an isolated portion of a competitive supply chain as a M/M/1 make-to-stock queue. The retailer carries finished goods inventory to service a Poisson demand process, and specifies a policy for replenishing his inventory from an upstream supplier. The supplier chooses the service rate, i.e., the capacity of his manufacturing facility, which behaves as a single-server queue with exponential service times. Demand is backlogged and both agents share the backorder cost. In addition, a linear inventory holding cost is charged to the retailer, and a linear cost for building production capacity is incurred by the supplier. The inventory level, demand rate, and cost parameters are common knowledge to both agents. Under the continuous-state approximation where the M/M/1 queue has an exponential rather than geometric steady-state distribution, we characterize the optimal centralized and Nash solutions, and show that a contract with linear transfer payments replicates a cost-sharing agreement and coordinates the system. We also compare the total system costs, the agents' decision variables, and the customer service levels of the centralized versus Nash versus Stackelberg solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.