Abstract

The bistable snap-through behavior of a compressed beam is modeled and measured experimentally as its supporting surface is bent through positive and negative curvatures. When the supporting angle of the beam exceeds a critical angle, bistability is lost and only one stable state is supported. The critical angle is controlled only by the initial compressive stress in the beam, and we report a nondimensionalized calculation method for this angle. This large-deflection nonlinear model provides design rules for low-power sensors and actuators that can measure and control surface curvature from the micro- to macroscale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call