Abstract
Graph alignment in two correlated random graphs refers to the task of identifying the correspondence between vertex sets of the graphs. Recent results have characterized the exact information-theoretic threshold for graph alignment in correlated Erdös-Rényi graphs. However, very little is known about the existence of efficient algorithms to achieve graph alignment without seeds. In this work we identify a region in which a straightforward O(n 11/5 log n)-time canonical labeling algorithm, initially introduced in the context of graph isomorphism, succeeds in aligning correlated Erdos-Rényi graphs. The algorithm has two steps. In the first step, all vertices are labeled by their degrees and a trivial minimum distance alignment (i.e., sorting vertices according to their degrees) matches a fixed number of highest degree vertices in the two graphs. Having identified this subset of vertices, the remaining vertices are matched using a alignment algorithm for bipartite graphs. Finally, we show that the implementation of a variant of this algorithm allows for the efficient alignment of large graphs under limited noise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the ACM on Measurement and Analysis of Computing Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.