Abstract

We show that, for k constant, k-tree isomorphism can be decided in logarithmic space by giving an O(klogn) space canonical labeling algorithm. The algorithm computes a unique tree decomposition, uses colors to fully encode the structure of the original graph in the decomposition tree and invokes Lindellʼs tree canonization algorithm. As a consequence, the isomorphism, the automorphism, as well as the canonization problem for k-trees are all complete for deterministic logspace. Completeness for logspace holds even for simple structural properties of k-trees. We also show that a variant of our canonical labeling algorithm runs in time O((k+1)!n), where n is the number of vertices, yielding the fastest known FPT algorithm for k-tree isomorphism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.