Abstract

A starting material, 4-bromo-3-fluorobenzaldehyde, was used for active drug substance (API) AMG 369 production. The presence of the regioisomer impurities in the starting material 4-bromo-3-fluorobenzaldehyde presented significant challenges for the API synthetic route development due to the physical-chemical similarities of the impurities. These impurities significantly impact on the purity of the starting-material and final drug substance. Control of these impurities is important due to the potential genotoxicity of these impurities (p-GTI). Analytical development was carried out to develop GC methods with high resolving power and high sensitivity to quantify the regioisomers presented in starting material and therefore to control the purity of the starting material and the final drug substance.In the study, complete resolution of the ten regioisomers by 1D-GC and heart-cutting two-dimensional GC (2D-GC) was achieved. A sensitive GC/micro electron capture detection (μ-ECD) method with high resolving power and sensitivity to fully resolve all the ten regioisomers of 4-bromo-3-fluorobenzaldehyde was obtained by using a CHIRALDEX GC column (1D- GC). To facilitate the systematic GC method development, heart-cutting two-dimensional gas chromatography (2D-GC) using a Deans switch was exploited for the separation of the ten regioisomers. The resulting heart-cutting 2D-GC method successfully separated all the ten regioisomers with better sensitivity and resolution. Regioisomer impurities in the starting material were identified and quantified by these GC methods. The sensitivity for the methods is in the range of 0.004ng to 0.02ng for the regioisomers. Linearity for the methods is: R2=0.999 to 1.000. The methods were suitable for control of the regioisomer impurities, p-GTIs, in the starting material and final drug substance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.