Abstract
In-situ measurements of atmospheric chlorofluorocarbons (CFCs) can be used to the assess their global and regional emissions and to check for compliance with phase-out schedules under Montreal protocol and its amendments. The atmospheric mixing ratios of CFC-11 (CCl 3F), CFC-12 (CCl 2F 2) and CFC-113 (CCl 2F–CClF 2) have been measured by an automated in-situ GC-ECDs system at the regional Chinese Global Atmosphere Watch (GAW) station Shangdianzi (SDZ), from November 2006 to October 2009. The time series for these three principal CFCs showed large episodic events and background conditions occurred for approximately 30% (CFC-11), 52% (CFC-12) and 56% (CFC-113) of the measurements. The mean background mixing ratios for CFC-11, CFC-12 and CFC-113 were 244.8 ppt (parts per trillion, 10 −12, molar) 539.6 ppt and 76.8 ppt, respectively, for 2006–2009. The enhanced CFC mixing ratios compared to AGAGE sites such as Trinidad Head (THD), US and Mace Head (MHD), Ireland suggest regional influences even during background conditions at SDZ, which is much closer to highly-populated areas. Between 2006 and 2009 background CFCs exhibited downward trends at rates of −2.0 ppt yr −1 for CFC-11, −2.5 ppt yr −1 for CFC-12 and −0.7 ppt yr −1 for CFC-113. De-trended 3-year average background seasonal cycles displayed small fluctuations with peak-to-trough amplitudes of 1.0 ± 0.02 ppt (0.4%) for background CFC-11, 1.3 ± 2.1 ppt (0.3%) for CFC-12 and 0.2 ± 0.4 ppt (0.3%) for CFC-113. On the other hand, during pollution periods these CFCs showed much larger seasonal cycles of 11.2 ± 10.7 ppt (5%) for CFC-11, 7.5 ± 6.5 ppt (2%) for CFC-12 and 1.0 ± 1.2 ppt (1.2%) for CFC-113, with apparent winter minima and early summer maxima. This enhancement was attributed to prevailing wind directions from urban regions in summer and to enhanced anthropogenic sources during the warm season. In general, horizontal winds from northeast showed negative contribution to atmospheric CFCs loading, whereas South Western advection (urban sector: Beijing) had positive contributions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.