Abstract
The surge current capability of power diodes is one of the essential parameters that needs to be considered for high power density operations in power electronic applications. Gallium Nitride (GaN) is emerging as the next generation of power semiconductor devices due to its superior material characteristics. This work presents the device working principle, characteristics, and the surge capability of 1200 V GaN polarisation superjunction (PSJ) hybrid diodes. The experimental results show that the GaN PSJ diode can withstand a surge current of 60 A which is around 8 times its rated current and a surge energy of 5.4 J. Additionally, despite having a merged PiN and Schottky structure, no bipolar current flow due to the activation of p-doped GaN can be observed until breakdown. This can also be confirmed through the device forward characteristic which shows a unique saturation behaviour at about 76 A without any bipolar region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.