Abstract

This paper concerns the analysis of the dynamic forces and torques acting on the magnets in a Halbach permanent magnet array of a magnetically levitated moving-magnet planar actuator. A new analysis tool is presented which predicts the dynamic force and torque distribution on the magnet array. This design tool uses lookup table data, which are generated by numerically solving the Lorentz force and torque integral, to describe the force and torque between each magnet and coil in the topology. It offers a fast and accurate solution for the analysis of magnetically levitated planar actuators. The results for two different commutation methods are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.