Abstract

Malaysia has an abundance of agro waste material that have not been fully utilized to a maximum production. Thus, the finding of a new alternative fiber in non wood material will be favorable in paper production. Pineapple (Ananas Comosus) is the common tropical plant, which consists of coalesced berries. This pineapple is leading member of the family of Bromeliaceae and it came from genusAnanas. Fiber bundle from pineapple leaf can be separated from the cortex where it reveals the pineapple leaf fiber in multi-cellular and lignocelluloses pattern. This leaf has a ribbon-like structure and cemented together by lignin, pentosan-like materials, where it contributes to the strength of fiber [7]. All parts in pineapple from fruits to leaves could be consumed to give a health benefit for human life. Pineapple had been used as textile fiber, anti-inflammatory and also anti-helminthic agent. According to the FAO online database, the Malaysian country had consumed 255,000 tones per year and in third position in the world of consuming pineapple production. Pineapple is mainly produced as canned fruits and also coarse textiles in some Southeast Asian countries. Leaves of pineapple had been used as coarse textiles because of the fiber composition and structure inside the leaves [3]. All fibrous in non wood materials especially pineapple leaf consists of cellulose, holocellulose, hemicelluloses and lignin along with some extraneous material called extractives such as gum and resin. Previous research indicates pineapple leaf fiber contained higher cellulose content than wood fiber. Pineapple leaf fibers also consist of lignin [23], an adhesive component that binds the cellulose and hemicellulose. Pineapple leaf fiber had the lowest lignin content than other alternative fiber, which is favorable during chemical processing [12]. The chemical composition aspects have been considered in the previous literature, such as banana stem, coconut and oil palm and had been reported extensively. Pineapple leaf reported has a lowest lignin (10.5%) rather than banana stem (18.6%), oil palm (20.5%) and coconut (32.8%) that suggest can undergo bleaching more easily and have high fiber strength [12]. Besides that, pineapple leaf contains high holocelulose content (87.6%) than banana stem (65.2%), oil palm (83.5%) and coconut (56.3%) [11]. Those properties depend on the content of chemical composition in the pineapple leaf fiber, which is cellulose, hemicelluloses and lignin content [15].

Highlights

  • Malaysia has an abundance of agro waste material that have not been fully utilized to a maximum production

  • The chemical pulp yields are shown in table 3

  • The condition of the cooking process had been set shows an optimization for this pineapple leaf fiber for chemical cooking process (15% sodium hydroxide, a liquor ratio 7:1 at 1700C for 90 minutes)

Read more

Summary

Introduction

Malaysia has an abundance of agro waste material that have not been fully utilized to a maximum production. Fiber bundle from pineapple leaf can be separated from the cortex where it reveals the pineapple leaf fiber in multi-cellular and lignocelluloses pattern. This leaf has a ribbon-like structure and cemented together by lignin, pentosan-like materials, where it contributes to the strength of fiber [7]. Pineapple leaf reported has a lowest lignin (10.5%) rather than banana stem (18.6%), oil palm (20.5%) and coconut (32.8%) that suggest can undergo bleaching more and have high fiber strength [12].Those properties depend on the content of chemical composition in the pineapple leaf fiber, which is cellulose, hemicelluloses and lignin content [15]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call